Lecture 22. A Gallery of Solution Curves of Linear Systems

In the previous sections, we talked about the method of solving the differential equation

$$\mathbf{x}' = \mathbf{A}\mathbf{x} \tag{1}$$

where **A** is an $n \times n$ matrix. Note the eigenvalues and eigenvectors of **A** plays an essential role in the solution of Eq. (1).

In this section, we give a brief introduction on the geometric understanding of the role that the eigenvalues and eigenvectors of the matrix \mathbf{A} play in the solutions of the system (1). We will consider the special case when n = 2.

First, let's review the Eigenvalue Method. Particulary for a 2 imes 2 matrix ${f A}.$

– Constant Coeff. Homogeneous System:	
Constant Coeff. Homogeneous:	$rac{dec{\mathbf{x}}}{dt} = \mathbf{A}ec{\mathbf{x}}$
Solution:	$\vec{\mathbf{x}} = c_1 \vec{\mathbf{x}}_1 + c_2 \vec{\mathbf{x}}_2 + \cdots,$ where $\vec{\mathbf{x}}_i$ are fundamental solutions from eigenvalues & eigenvectors. The method is described as below.
The Eigenvalue Method for Homogeneous Systems:	
The number λ is called an <i>eigenvalue</i> of the matrix A if $ \mathbf{A} - \lambda \mathbf{I} = 0$.	
An eigenvector associated with the $(\mathbf{A} - \lambda \mathbf{I})\vec{\mathbf{v}} = \vec{0}.$	he eigenvalue λ is a nonzero vector v such that
We consider A to be 2 × 2, then the general solution is $\vec{\mathbf{x}}(t) = c_1 \vec{\mathbf{x}}_1(t) + c_2 \vec{\mathbf{x}}_2(t)$, with the fundamental solutions $\vec{\mathbf{x}}_1(t), \vec{\mathbf{x}}_2(t)$ found has follows.	
• Distinct Real Eigenvalues. $\vec{\mathbf{x}}_1(t) = \vec{\mathbf{v}}_1 e^{\lambda_1 t}, \vec{\mathbf{x}}_2(t) = \vec{\mathbf{v}}_2 e^{\lambda_2 t}$	
• Complex Eigenvalues. $\lambda_{1,2} = p \pm qi$. (suggestion: use an example to remember the method)	
If $\vec{v} = \vec{a} + i\vec{b}$ is an eigenvector associated with $\lambda = p + qi$, then	
$\vec{\mathbf{x}}_1(t) = e^{pt} \left(\vec{a} \cos qt - \vec{b} \sin q \right)$	t), $\vec{\mathbf{x}}_2(t) = e^{pt} (\vec{b} \cos qt + \vec{a} \sin qt)$
• Defective Eigenvalue with multiplicity 2. Find nonzero $\vec{\mathbf{v}}_2$ and $\vec{\mathbf{v}}_1$ such that $(\mathbf{A} - \lambda \mathbf{I})^2 \vec{\mathbf{v}}_2 = 0$ and $(\mathbf{A} - \lambda \mathbf{I}) \vec{\mathbf{v}}_2 = \vec{\mathbf{v}}_1$. Then $\vec{\mathbf{x}}_1(t) = \vec{\mathbf{v}}_1 e^{\lambda t}$, $\vec{\mathbf{x}}_2(t) = (\vec{\mathbf{v}}_1 t + \vec{\mathbf{v}}_2) e^{\lambda t}$.	

Let's consider the differential equation

$$\mathbf{x}' = \mathbf{A}\mathbf{x},\tag{1}$$

where ${f A}$ is a 2 imes 2 matrix.

To understand the geometric intepretation of the solutions, we consider the following cases:

Real Eigenvalues

We will divide the case where λ_1 and λ_2 are real into the following possibilities:

- Distinct eigenvalues
 - Nonzero and of opposite sign $(\lambda_1 < 0 < \lambda_2)$
 - Both negative $(\lambda_1 < \lambda_2 < 0)$
 - Both positive $(0 < \lambda_2 < \lambda_1)$
 - One zero and one negative $(\lambda_1 < \lambda_2 = 0)$
 - One zero and one positive $(0 = \lambda_2 < \lambda_1)$
- Repeated eigenvalue
 - Positive $(\lambda_1 = \lambda_2 > 0)$
 - Negative $(\lambda_1 = \lambda_2 < 0)$
 - Zero $(\lambda_1 = \lambda_2 = 0)$

Complex Eigenvalues

In this case, we have $\lambda = p \pm i q$

- Purely imaginary ($\operatorname{Re}\lambda=0$)
- Positive real part ($\operatorname{Re} \lambda > 0$)
- Negative real part ($\operatorname{Re}\lambda < 0$)

The next two pages summarizes the gallery of typical phase plane portraits for the system $\mathbf{x}' = \mathbf{A}\mathbf{x}$. Explaining every phase plane in detail would take a week of classes, so we won't go into too much depth. Instead, I'll show you some examples of specific cases.

Gallery of Typical Phase Portraits for the System x' = Ax: Nodes

Proper Nodal Source: A repeated positive real eigenvalue with two linearly independent eigenvectors.

Proper Nodal Sink: A repeated negative real eigenvalue with two linearly independent eigenvectors.

Improper Nodal Source: Distinct positive real eigenvalues (left) or a repeated positive real eigenvalue without two linearly independent eigenvectors (right).

Improper Nodal Sink: Distinct negative real eigenvalues (left) or a repeated negative real eigenvalue without two linearly independent eigenvectors (right).

Gallery of Typical Phase Portraits for the System x' = Ax: Saddles, Centers, Spirals, and Parallel Lines

Saddle Point: Real eigenvalues of opposite sign.

Spiral Source: Complex conjugate eigenvalues with positive real part.

Parallel Lines: One zero and one negative real eigenvalue. (If the nonzero eigenvalue is positive, then the trajectories flow *away* from the dotted line.)

Center: Pure imaginary eigenvalues.

Spiral Sink: Complex conjugate eigenvalues with negative real part.

Parallel Lines: A repeated zero eigenvalue without two linearly independent eigenvectors.

Example 1.

Match each linear system with one of the phase plane direction fields. (The blue lines are the arrow shafts, and the black dots are the arrow tips.)

Note: To solve this problem, you only need to compute eigenvalues. In fact, it is enough to just compute whether the eigenvalues are real or complex and positive or negative.

Linear Systems	Phase Plane
1. $\mathbf{x}' = \begin{bmatrix} 7 & 5 \\ -5 & 1 \end{bmatrix} \mathbf{x}$	A.
2. $\mathbf{x}' = egin{bmatrix} 6 & -3 \ -1 & 4 \end{bmatrix} \mathbf{x}$	B.
3. $\mathbf{x}' = \begin{bmatrix} -5 & 4 \\ 1 & -5 \end{bmatrix} \mathbf{x}$	C .
4. $\mathbf{x}' = \begin{bmatrix} -3 & 1 \\ 3 & -1 \end{bmatrix} \mathbf{x}$	D.
1. Compute the eigenvalues for A $\lambda = 4 \pm 4i$ Thus for I, we know A hus	$I = \begin{bmatrix} 7 & 5 \\ -5 & 1 \end{bmatrix}$, we find as complex - valued eigenvalues with

We know the origin is a spiral source. So the correct answer
is P.
Further discussion, if we completely solve the system, we know

$$\vec{X} = \begin{bmatrix} x(ti) \\ y(ti) \end{bmatrix} = C_1 e^{4t} \begin{bmatrix} cost \\ s \end{bmatrix} + sin ti \begin{pmatrix} 4 \\ 0 \end{bmatrix} + C_2 e^{4t} \begin{bmatrix} cost \\ 0 \end{bmatrix} + sin ti \begin{pmatrix} 4 \\ 0 \end{bmatrix} + C_2 e^{4t} \begin{bmatrix} cost \\ 0 \end{bmatrix} + sin ti \begin{pmatrix} 4 \\ 0 \end{bmatrix} + sin ti \begin{pmatrix} 4 \\ 0 \end{bmatrix} + c_2 e^{4t} \begin{bmatrix} cost \\ 0 \end{bmatrix} + sin ti \begin{pmatrix} 4 \\ 0 \end{pmatrix} + sin ti \end{pmatrix} + sin ti \begin{pmatrix} 4 \\ 0 \end{pmatrix} + sin ti \begin{pmatrix} 4 \\ 0 \end{pmatrix} + sin ti \end{pmatrix} + sin ti \begin{pmatrix} 4 \\ 0 \end{pmatrix} + sin ti \begin{pmatrix} 4 \\ 0 \end{pmatrix} + sin ti \end{pmatrix} + sin ti \begin{pmatrix} 4 \\ 0 \end{pmatrix} + sin ti \end{pmatrix} + sin ti \begin{pmatrix} 4 \\ 0 \end{pmatrix} + sin ti \end{pmatrix} + sin ti \begin{pmatrix} 4 \\ 0 \end{pmatrix} + sin ti \end{pmatrix} + sin ti \end{pmatrix} + sin ti \begin{pmatrix} 4 \\ 0 \end{pmatrix} + sin ti \end{pmatrix} + sin ti \end{pmatrix} + sin ti \end{pmatrix} + sin ti \begin{pmatrix} 4 \\ 0 \end{pmatrix} + sin ti \end{pmatrix} + sin ti$$

Example 2.

(1) Find the most general real-valued solution to the linear system of differential equations

$$\mathbf{x}' = egin{bmatrix} -13 & 12 \ -9 & 8 \end{bmatrix} \mathbf{x}$$

(2) In the phase plane, this system is best described as a

source / unstable node sink / stable node saddle center point / ellipses spiral source spiral sink none of these

Answer.

(1) Apply the usual eigenvalue and eigenvector method, we find

$$egin{aligned} \lambda_1 &= -4, \, \mathbf{v}_1 = egin{bmatrix} 4 \ 3 \end{bmatrix} \ \lambda_2 &= -1, \, \mathbf{v}_2 = egin{bmatrix} 1 \ 1 \end{bmatrix} \end{aligned}$$

Thus the general solution is

$$egin{bmatrix} x_1(t) \ x_2(t) \end{bmatrix} = c_1 egin{bmatrix} 4e^{-4t} \ 3e^{-4t} \end{bmatrix} + c_2 egin{bmatrix} e^t \ e^t \end{bmatrix}$$

(2)